

## Day 2 PDF Files

Air Pressure - Air Pressure Team Map<br>- Air Pressure Team Graph Data (days 2 \& 3)<br>- Air Pressure Team Graph

Humidity • Humidity Team Dew Point Temperature Map

- Humidity Team Graph Data (days 2 \& 3)
- Humidity Team Graph
- Humidity Team Relative Humidity Map

Temperature • Temperature Team Surface Temperature Map

- Temperature Team Upper Air Temperature Map
- Temperature Team Graph Data (days 2 \& 3)
- Temperature Team Graph

Wind • Wind Team Upper Air Wind Speed Map

- Wind Team Graph Data (days 2 \& 3)
- Wind Team Graph


## Air Pressure Team - Day 2

Isobars are lines connecting places of equal air pressure. They have a regular interval of four millibars. First, fill in the key with a pattern of numbers increasing or decreasing by four.

Some isobar lines might not be numbered. Next print the correct numbers next to those lines. Then using the color key, trace over all the isobar lines.

Draw circles around the highest and the lowest number on this map. Label the high with the letter " H " and the low with the letter "L."

The star on the map marks New York City. Estimate the air pressure reading for New York City and record it on the line. What air pressure reading do you expect for New York City in 24 hours? In 48 hours?


| KEY |  |
| :--- | :--- |
| Color | Millibars |
| Red | 1024 |
| Yellow |  |
| Orange |  |
| Green |  |
| Blue |  |
| Purple |  |
| Brown | 1000 |
| Black |  |
| Grey |  |

Interval 4.0
Copyright © 2004 by Wheeling Jesuit University/Classroom of the Future ${ }^{\text {TM }}$. All rights reserved. Some images © 2004 www.clipart.com.

## Days 2 and 3 Air Pressure Team Graph Data for New York City

Day 2

| EST | Air Pressure <br> $(\mathrm{mb})$ |
| :---: | :---: |
|  | 2 p.m. |
| 3 p.m. | 1014 |
| 4 p.m. | 1014 |
| 5 p.m. | 1014 |
| 6 p.m. | 1014 |
| 7 p.m. | 1013 |
| 8 p.m. | 1013 |
| 9 p.m. | 1014 |
| 10 p.m. | 1014 |
| 11 p.m. | 1014 |
| Midnight | 1014 |

Day 3

| EST | Air Pressure (mb) |
| :---: | :---: |
| 2 p.m. | 996 |
| 3 p.m. | 995 |
| 4 p.m. | 996 |
| 5 p.m. | 997 |
| 6 p.m. | 997 |
| 7 p.m. | 998 |
| 8 p.m. | 998 |
| 9 p.m. | 998 |
| 10 p.m. | 998 |
| 11 p.m. | 999 |
| Midnight | 999 |

## Air Pressure Team Graph Day 2 - New York City

The graph below displays air pressure data for New York City on day 2. The data is recorded every hour. Complete the graph by marking a dot on each hour. Ask your teacher for the data. Next draw a line to connect the dots. This makes a line graph.

Is the air pressure rising, falling, or staying about the same?
What type of weather do you think New York City is having on day 2?


## Hour

## Humidity Team Dew Point Temperature - Day 2

Dew point is the temperature to which air must be cooled to achieve saturation. The possibility of cloud formation increases as the air temperature drops closer to its dew point.

Important: Use the relative humidity map you have already completed to assist you. Find the places you circled and begin the following search in those areas.

Circle the places on the dew point temperature map where the difference between the surface air temperature (top number) and the dew point temperature (bottom number) is less than or equal to $2(\leq 2)$ degrees. Now look at the areas you circled. Which have the highest possibility of precipitation?

What are your weather predictions for New York City in 24 hours? In 48 hours? Be ready to report to Weather Central.


Copyright © 2004 by Wheeling Jesuit University/Classroom of the Future ${ }^{\top T M}$. All rights reserved. Some images © 2004 www.clipart.com.

## Days 2 and 3 Humidity Team Graph Data for New York City

| EST | Temperature (degrees F) | Dew Point (degrees F) | Difference |
| :---: | :---: | :---: | :---: |
| 2 p.m. | 30 | 16 | 14 |
| 3 p.m. | 31 | 17 |  |
| 4 p.m. | 29 | 17 |  |
| 5 p.m. | 28 | 18 |  |
| 6 p.m. | 28 | 18 |  |
| 7 p.m. | 28 | 18 |  |
| 8 p.m. | 28 | 19 |  |
| $9 \mathrm{p} . \mathrm{m}$. | 27 | 19 |  |
| 10 p.m. | 26 | 20 |  |
| 11 p.m. | 27 | 19 |  |
| Midnight | 26 | 19 |  |
| Day 3 |  |  |  |
| EST | Temperature (degrees F) | Dew Point (degrees F) | Difference |
| 2 p.m. | 28 | 28 | 0 |
| 3 p.m. | 30 | 29 |  |
| 4 p.m. | 29 | 29 |  |
| 5 p.m. | 30 | 30 |  |
| 6 p.m. | 29 | 28 |  |
| 7 p.m. | 29 | 27 |  |
| 8 p.m. | 28 | 24 |  |
| 9 p.m. | 27 | 24 |  |
| 10 p.m. | 26 | 23 |  |
| 11 p.m. | 26 | 23 |  |
| Midnight | 26 | 22 |  |

Day 2

## Humidity Team Graph Day 2 - New York City

Finish the line graph of temperature readings for New York City on day 2. Ask your teacher for the data. Graph the temperature in red. Graph the dew point in blue.

Is the temperature dropping toward the dew point? Is the possibility of precipitation increasing or decreasing? What type of weather do you think New York City is having on day 2?


Hour

## Humidity Team Relative Humidity - Day 2

Important: Complete this map before starting the dew point temperature map.
Relative humidity measures how close air is to saturation. The possibility of precipitation increases as the relative humidity approaches 100 percent. Use a red pencil to circle numbers greater than or equal to 90 ( $\geq 90$ ). DO NOT shade in the circle. Now look at the areas you circled. Which have the highest possibility of precipitation?

Compare the days 1 and 2 maps. The star marks New York City. Do you notice any weather patterns or trends that would affect the weather in New York City in 24 hours? In 48 hours?


## Temperature Team Surface Temperature - Day 2

The surface temperature readings on this map are in degrees Fahrenheit. On the Fahrenheit scale freezing is 32 degrees.

Circle each number with the corresponding color in the key. DO NOT shade in the circle.
An isotherm is a line on a map joining areas of equal temperature. Use a black pencil to draw an isotherm connecting the 32-degree readings.

The star marks New York City. Looking at surface temperature alone, what type of precipitation is possible in New York City?


| KEY |  |
| :--- | :---: |
| Color | ${ }^{\circ}{ }^{\circ}$ |
| Red | $>32$ |
| Black | 32 |
| Blue | $<32$ |

## Temperature Team Upper Air Temperature - Day 2

Most precipitation forms approximately 5,000 feet above sea level, where the air pressure is 850 mb . Temperatures at this level affect the type of precipitation that forms. The 850 mb temperature readings on this map are in degrees Celsius. On the Celsius scale freezing is 0 degrees.

Circle each number with the corresponding color in the key. DO NOT shade in the circle.
An isotherm is a line on a map joining areas of equal temperature. Use a black pencil to draw an isotherm connecting the 0 -degree readings.

The star marks New York City. Looking at the 850 mb temperature alone, IF precipitation develops, what type would form 5,000 feet above New York City?


| Day 2 | EST | Temperature <br> (degrees F) |  | Wind Speed (knots) | Wind Chill (degrees F) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 p.m. | 30 |  | 9 | 21 |
|  | 3 p.m. | 31 |  | 7 | 27 |
|  | 4 p.m. | 29 |  | 7 | 21 |
|  | 5 p.m. | 28 |  | 5 |  |
|  | 6 p.m. | 28 |  | 5 |  |
|  | 7 p.m. | 28 |  | 5 |  |
|  | 8 p.m. | 28 |  | 5 |  |
|  | $9 \mathrm{p.m}$. | 27 |  | 4 |  |
|  | 10 p.m. | 26 |  | 4 |  |
|  | 11 p.m. | 27 |  | 5 |  |
|  | Midnight | 26 |  | 6 |  |


| Day 3 | EST | Temperature (degrees F) |  | Wind Speed (knots) | Wind Chill (degrees F) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 p.m. | 28 |  | 23 | 16 |
|  | 3 p.m. | 30 |  | 20 | 17 |
|  | 4 p.m. | 29 |  | 18 | 17 |
|  | 5 p.m. | 30 |  | 17 |  |
|  | 6 p.m. | 29 |  | 19 |  |
|  | 7 p.m. | 29 |  | 18 |  |
|  | 8 p.m. | 28 |  | 16 |  |
|  | $9 \mathrm{p} . \mathrm{m}$. | 27 |  | 18 |  |
|  | 10 p.m. | 26 |  | 21 |  |
|  | 11 p.m. | 26 |  | 18 |  |
|  | Midnight | 26 |  | 18 |  |

## Temperature Team Graph Day 2 - New York City

Finish the line graph of surface temperature readings for New York City on day 2. Ask your teacher for the data. Graph the temperature in red.

Are surface temperatures in New York City above freezing, below freezing, or both?


Hour
Next calculate wind chills. Use the Wind Chill Index Chart below and your graph data sheet. Are there dangerous wind chills in New York City on day 2? If so, when do they occur?

Wind Chill Index Chart

|  |  | Surface Temperature ( ${ }^{\circ} \mathrm{F}$ ) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 40-36 | 35-31 | 30-26 | 25-21 | 20-16 | 15-11 | 10-6 | 5-1 | 0-4 | -5-9 | -10-14 | -15-19 |
| Wind Speed (knots) | 1-5 | 36 | 31 | 25 | 19 | 13 | 7 | 1 | -5 | -11 | -16 | -22 | -28 |
|  | 6-10 | 34 | 27 | 21 | 15 | 9 | 3 | -4 | -10 | -16 | -22 | -28 | -35 |
|  | 11-15 | 32 | 25 | 19 | 13 | 6 | 0 | -7 | -13 | -19 | -26 | -32 | -39 |
|  | 16-20 | 30 | 24 | 17 | 11 | 4 | -2 | -9 | -15 | -22 | -29 | -35 | -42 |
|  | 21-25 | 29 | 23 | 16 | 9 | 3 | -4 | -11 | -17 | -24 | -31 | -37 | -44 |
|  | 26-30 | 28 | 22 | 15 | 8 | 1 | -5 | -12 | -19 | -26 | -33 | -39 | -46 |
|  | 31-35 | 28 | 21 | 14 | 7 | 0 | -7 | -14 | -21 | -27 | -34 | -41 | -48 |
|  | 36-39 | 27 | 20 | 13 | 6 | -1 | -8 | -15 | -22 | -29 | -36 | -43 | -50 |
|  |  |  |  |  |  |  |  |  | Frostbite Occurs in 15 Minutes or Less |  |  |  |  |

## Wind Team Upper Air Wind Speed - Day 2

Jet streams are narrow corridors of very strong winds at altitudes from 30,000 to 50,000 feet. They blow in a wavy pattern from west to east across North America at speeds exceeding 90 knots.
The shape of the jet stream is important in weather forecasting. Troughs ( $U$ ) of low pressure air that dip south bring cold, cloudy weather. Ridges ( $\cap$ ) of high pressure air that rise north bring warm, clear weather.
Circle each number with the corresponding color in the key. DO NOT shade in the circle. Do you notice a trough or ridge? What is the position of the jet stream in relation to New York City (indicated by a star)? How might the shape of the jet stream affect the weather in New York City?

Copyright © 2004 by Wheeling Jesuit University/Classroom of the Future ${ }^{\text {TM }}$. All rights reserved. Some images © 2004 www.clipart.com.

## Days 2 and 3 Wind Team Graph Data for New York City

| Day 2 | EST | $\begin{gathered} \text { Wind Speed } \\ \text { (knots) } \end{gathered}$ |  | Temperature (degrees F) | Wind Chill (degrees F) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 p.m. | 9 |  | 30 | 21 |
|  | 3 p.m. | 7 |  | 31 | 27 |
|  | $4 \mathrm{p} . \mathrm{m}$. | 7 |  | 29 | 21 |
|  | 5 p.m. | 5 |  | 28 |  |
|  | 6 p.m. | 5 |  | 28 |  |
|  | 7 p.m. | 5 |  | 28 |  |
|  | 8 p.m. | 5 |  | 28 |  |
|  | $9 \mathrm{p} . \mathrm{m}$. | 4 |  | 27 |  |
|  | 10 p.m. | 4 |  | 26 |  |
|  | 11 p.m. | 5 |  | 27 |  |
|  | Midnight | 6 |  | 26 |  |


| Day 3 | EST | Wind Speed <br> (knots) |  | Temperature (degrees F) | Wind Chill (degrees F ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 〔$\stackrel{4}{4}$022 | 2 p.m. | 23 |  | 28 | 16 |
|  | $3 \mathrm{p} . \mathrm{m}$. | 20 |  | 30 | 17 |
|  | 4 p.m. | 18 |  | 29 | 17 |
|  | 5 p.m. | 17 |  | 30 |  |
|  | 6 p.m. | 19 |  | 29 |  |
|  | 7 p.m. | 18 |  | 29 |  |
|  | 8 p.m. | 16 |  | 28 |  |
|  | $9 \mathrm{p} . \mathrm{m}$. | 18 |  | 27 |  |
|  | 10 p.m. | 21 |  | 26 |  |
|  | 11 p.m. | 18 |  | 26 |  |
|  | Midnight | 18 |  | 26 |  |

## Wind Team Graph Day 2 - New York City

Surface winds blow across the Earth at altitudes from 0 to approximately 3,000 feet.
First, finish the line graph of surface wind speeds for New York City on day 2. Ask your teacher for the data. Is the wind speed increasing or decreasing?


Key
Hour
G = Gust
1 Knot = 1.151 miles/hr.

Next, calculate wind chills. Use the Wind Chill Index chart below and your graph data sheet. Are there dangerous wind chills in New York City on day 2? If so, when do they occur?

## Wind Chill Index Chart

Surface Temperature ( ${ }^{\circ} \mathrm{F}$ )


