

Name:

Date:

Grade level:

Task 1: Measuring the Fuel Cost

Example 1 - Part 1: Amount of Fuel Used				
Fuel Cost = Distance × Fuel Cost Rate		OR	$\mathbf{F} = \mathbf{D} \times \mathbf{C}$	
• For the first leg o	f your flight, the distance (D) betwe	een site <i>p</i> and site <i>a</i> is 362	kilometers.	
• The fuel cost rate	e (C) is .02 kilograms per kilometer (kg/km).		

• Calculate the fuel cost (F) of flying from site p to site a using the formula:

 $F = D \times C$ Be sure to show your work!

 $F = \underline{\qquad} km \times \underline{\qquad} kg/km$

 $F = \underline{\qquad} kg/km$

Example 1 - Part 2: Percentage of Initial Fuel

- Now that you know the fuel cost (F) of flying from site p to site *a*, you need to calculate what percentage of your total fuel was used.
- To calculate what percentage of the fuel tank has been used with this leg of the flight, you will use the following equation:

Percentage of Fuel Tank =
$$\frac{F kg}{20 Kg} * 100\%$$

$$\frac{kg}{20 \, Kg} * 100 \,\% = \,_\,\%$$

• What percentage of your fuel tank did you use?

Example 2

- For the next leg of your flight, the distance (D) will be 347 km. The fuel cost rate (C) will be .02 kg.
- Calculate the fuel cost for the next leg of your flight using the equation: $F = D \times C$

With this equation now calculate what percentage of your total fuel would be used:

Percentage of Fuel Tank =
$$\frac{F kg}{20 Kg} * 100\%$$

• What percentage of your fuel tank did you use?

Task 2: Deciding Which Site to Visit

Example 1

Data set :Coordinates of site a : (36%, 51%)Coordinates of site b : (35%, 62%)

Coordinates of site c: (41%, 82%)

Decision-making Graph

Example 2

Data set : Coordinates of site a : (6%, 45%)

Coordinates of site *b* : (26%, 77%)

Coordinates of site c: (8%, 95%)

Decision-making Graph

Task 3: Calculating the Area of the Site

Example 1

Which formula will you need?.

Area of a triangle	$=\frac{B x H}{2}$
Area of a rectangle	= B x H
Area of a circle	$= \pi \times \mathbf{r}^2 \qquad (\pi = 3.14)$
Area of a quadrilateral	$=\frac{B x \left(H_1+H_2\right)}{2}$

Now calculate the area of the site using the measurements from the picture. Be sure to show your work!

Example 2

Choose your formula:

Area of a triangle	$=\frac{B x H}{2}$
Area of a rectangle	= B x H
Area of a circle	$= \pi \times r^2 \qquad (\pi = 3.14)$
Area of a quadrilateral	$=\frac{B x \left(H_1+H_2\right)}{2}$

Now calculate the area of site 2. Be sure to show your work!

Task 4: Calculating the Amount of Minerals

Example 1

Site area = 4.35 km^2 Site mineral density = 50 kg/km^2

Mineral quantity = density (kg/km^2) * site area (km^2)

- The mineral density of hematite contained at the site is 50 kg/km².
- Use the formula to calculate the mineral quantity for this site.

Mineral quantity = ____kg/km² * ____ (km²) Mineral quantity = ____kg

Example 2

Site area = 19.625 km2 Site mineral density = 75 kg/km²

• Find the mineral quantity for this site using the mineral quantity formula.

Mineral quantity = density (kg/km²) * site area (km²) Mineral quantity = _____ kg/km² * _____ km² Mineral quantity = _____ kg

Congratulations! You did it!