Name:

Date:

Grade level:

Task 1: Measuring the Fuel Cost

Example 1 - Part 1: Amount of Fuel Used

Fuel Cost $=$ Distance \times Fuel Cost Rate \quad OR \quad F $=\mathbf{D} \times \mathbf{C}$

- For the first leg of your flight, the distance (D) between site p and site a is 362 kilometers.
- The fuel cost rate (C) is . 02 kilograms per kilometer $(\mathrm{kg} / \mathrm{km})$.
- Calculate the fuel cost (F) of flying from site p to site a using the formula:
$\mathrm{F}=\mathrm{D} \times \mathrm{C}$ Be sure to show your work!
$\mathrm{F}=$ \qquad km \times \qquad $\mathrm{kg} / \mathrm{km}$
$\mathrm{F}=$ \qquad $\mathrm{kg} / \mathrm{km}$

Example 1 - Part 2: Percentage of Initial Fuel

- Now that you know the fuel cost (F) of flying from site p to site a, you need to calculate what percentage of your total fuel was used.
- To calculate what percentage of the fuel tank has been used with this leg of the flight, you will use the following equation:
Percentage of Fuel Tank $=\frac{F k g}{20 \mathrm{Kg}} * 100 \%$

$$
\overline{\overline{20 K g}} * 100 \%=\ldots
$$

- What percentage of your fuel tank did you use?
\qquad

Example 2

- For the next leg of your flight, the distance (D) will be 347 km . The fuel cost rate (C) will be .02 kg .
- Calculate the fuel cost for the next leg of your flight using the equation:
$\mathrm{F}=\mathrm{D} \times \mathrm{C}$
With this equation now calculate what percentage of your total fuel would be used:
Percentage of Fuel Tank $=\frac{F \mathrm{~kg}}{20 \mathrm{Kg}} * 100 \%$
- What percentage of your fuel tank did you use?
\qquad

Task 2: Deciding Which Site to Visit

Example 1

Data set : \quad Coordinates of site $a:(36 \%, 51 \%)$
Coordinates of site $b:(35 \%, 62 \%)$
Coordinates of site $c:(41 \%, 82 \%)$
Decision-making Graph

Example 2
Data set : \quad Coordinates of site $a:(6 \%, 45 \%)$
Coordinates of site $b:(26 \%, 77 \%)$
Coordinates of site $c:(8 \%, 95 \%)$

Decision-making Graph

Task 3: Calculating the Area of the Site

Example 1

Which formula will you need?.

$$
\begin{array}{ll}
\text { Area of a triangle } & =\frac{B \times H}{2} \\
\text { Area of a rectangle } & =B \times H \\
\text { Area of a circle } & =\pi \times \mathrm{r}^{2} \quad(\pi=3.14) \\
\text { Area of a quadrilateral } & =\frac{B \times\left(H_{1}+H_{2}\right)}{2}
\end{array}
$$

Now calculate the area of the site using the measurements from the picture. Be sure to show your work!

Example 2

Choose your formula:

$$
\begin{array}{ll}
\text { Area of a triangle } & =\frac{B \times H}{2} \\
\text { Area of a rectangle } & =B \times H \\
\text { Area of a circle } & =\pi \times \mathrm{r}^{2} \quad(\pi=3.14) \\
\text { Area of a quadrilateral } & =\frac{B \times\left(H_{1}+H_{2}\right)}{2}
\end{array}
$$

Now calculate the area of site 2 . Be sure to show your work!

Task 4: Calculating the Amount of Minerals

Example 1

Site area $=4.35 \mathrm{~km}^{2}$
Site mineral density $=50 \mathrm{~kg} / \mathrm{km}^{2}$

Mineral quantity $=$ density $\left(\mathrm{kg} / \mathrm{km}^{2}\right) *$ site area $\left(\mathrm{km}^{2}\right)$

- The mineral density of hematite contained at the site is $50 \mathrm{~kg} / \mathrm{km}^{2}$.
- Use the formula to calculate the mineral quantity for this site.

$$
\begin{aligned}
& \text { Mineral quantity }=\ldots \quad \mathrm{kg} / \mathrm{km}^{2} * \ldots\left(\mathrm{~km}^{2}\right) \\
& \text { Mineral quantity }=\ldots \quad \mathrm{kg}
\end{aligned}
$$

Example 2

Site area $=19.625 \mathrm{~km} 2$
Site mineral density $=75 \mathrm{~kg} / \mathrm{km}^{2}$

- Find the mineral quantity for this site using the mineral quantity formula.

Mineral quantity $=$ density $\left(\mathrm{kg} / \mathrm{km}^{2}\right) *$ site area $\left(\mathrm{km}^{2}\right)$
Mineral quantity $=$ \qquad $\mathrm{kg} / \mathrm{km}^{2}$ * \qquad km^{2}

Mineral quantity $=\ldots \quad \mathrm{kg}$

Congratulations! You did it!

