Task 1: Measuring the Fuel Cost

Example 1 - Part 1: Amount of Fuel Used

Fuel Cost = Distance × Fuel Cost Rate

OR

 $F = D \times C$

- For the first leg of your flight, the distance (D) between site p and site a is 362 kilometers.
- The fuel cost rate (C) is .02 kilograms per kilometer (kg/km).
- Calculate the fuel cost (F) of flying from site p to site a using the formula:

 $F = D \times C$ Be sure to show your work!

 $F = 362 \text{ km} \times .02 \text{ kg/km}$

F = 7.24 kg/km

Example 1 - Part 2: Percentage of Initial Fuel

- Now that you know the fuel cost (F) of flying from site p to site a, you need to calculate what percentage of your total fuel was used.
- To calculate what percentage of the fuel tank has been used with this leg of the flight, you will use the following equation:

Percentage of Fuel Tank = $\frac{F kg}{20 Kg} * 100\%$

• What percentage of your fuel tank did you use?

$$\frac{7.24 \ kg}{20 \ Kg} *100 \% = 36.2 \%$$

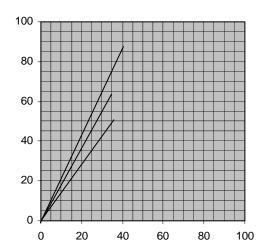
Example 2

- For the next leg of your flight, the distance (D) will be 347 km. The fuel cost rate (C) will be .02 kg.
- Calculate the fuel cost for the next leg of your flight using the equation: $F = D \times C$

Now calculate what percentage of your total fuel would be used with this equation:

Percentage of Fuel Tank =
$$\frac{F kg}{20 Kg} * 100\%$$

What percentage of your fuel tank did you use?
34.7 %

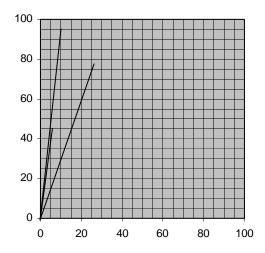

Task 2: Deciding Which Site to Visit

Example 1

Data set: Coordinates of site a: (36%, 51%)

Coordinates of site b: (35%, 62%) Coordinates of site c: (41%, 82%)

Decision-making Graph



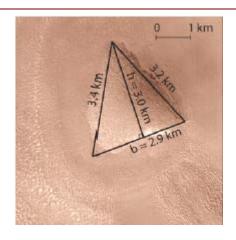
Example 2

Data set: Coordinates of site a:(6%, 45%)

Coordinates of site b: (26%, 77%) Coordinates of site c: (8%, 95%)

Decision-making Graph

Task 3: Calculating the Area of the Site


Example 1

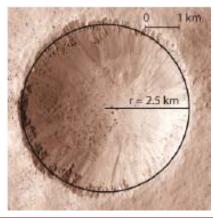
The formula needed is that of the triangle.

Area of a triangle =
$$\frac{B x H}{2}$$

The base is 2.9 km and the height is 3.0 km. The area is:

$$\frac{2.9 \text{ km} * 3.0 \text{ km}}{2} = 4.35 \text{ km}^2$$

Example 2


The formula needed is that of the circle:

Area of a circle =
$$\pi \times r^2$$
 ($\pi = 3.14$)

The radius is 2.5 km. The area is:

$$3.14 \times 2.5 \text{ km} \times 2.5 \text{ km} = 19.6 \text{ km}^2$$

You are almost done!

Task 4: Calculating the Amount of Mineral

Example 1

Site area = 4.35 km^2 Site mineral density = 50 kg/km^2

Mineral quantity = density (kg/km^2) * site area (km^2)

- The mineral density of hematite contained at the site is 50 kg/km².
- Use the formula to calculate the mineral quantity for this site.

Mineral quantity = $50 \text{ kg/km}^2 * 4.35 \text{ (km}^2\text{)}$ Mineral quantity = **217.5 kg**

Example 2

Site area = 19.625 km2Site mineral density = 75 kg/km^2

• Find the mineral quantity for this site using the mineral quantity formula.

Mineral quantity = density (kg/km^2) * site area (km^2) Mineral quantity = $75 kg/km^2$ * $19.625 km^2$ Mineral quantity = **1471.8 kg**

Congratulations! You did it!